Reduction and Simplification of Material Flows in a Factory: The Essential Foundation for JobshopLean
What is “Flow”?

Flow is “the progressive movement of product/s through a facility from the receiving of raw material/s to the shipping of the finished product/s without stoppages at any point in time due to backflows, machine breakdowns, scrap, or other production delays”

Role of Flow at Toyota

• (Page 11) “…I was manager of the machine shop at the Koromo plant. As an experiment, I arranged the various machines in the sequence of machining processes …”

• (Page 33) “…We realized that the (kanban) system would not work unless we set up a production flow that could handle the kanban system going back process by process …”

• (Page 39) “…It is undeniable that leveling becomes more difficult as diversification develops …”

Role of Flow at Toyota*

• (Page 54) “…Toyota’s main plant provides an example of a smooth production flow accomplished by rearranging the conventional machines after a thorough study of the work sequence …”

• (Page 54) “…It is crucial for the production plant to design a layout in which worker activities harmonize with rather than impede the production flow …”

• (Page 100) “…By setting up a flow connecting not only the final assembly line but all the processes, one reduces production lead time …”

Role of Flow at Toyota*

- (Page 123) “…When work flow is properly laid out, small isolated islands do not form …”

- (Page 125) “…For the worker on the production line, this means shifting from being single-skilled to becoming multi-skilled …”

- (Page 128) “…The first aspect of the TPS…means putting a flow into the manufacturing process…Now, we place a lathe, a mill and a drill in the actual sequence of the manufacturing processing …”

Are these \(\approx 500 \) Forgings “Flow”ing?
Is this **One** Forging “Flow”ing?
Value Stream Analysis for the Forging

Value Added Ratio = Value-Added Time/Flow Time

= 17.88%
Focus on Flow *not* Waste Elimination

Flow is “the progressive movement of product/s through a facility from the receiving of raw material/s to the shipping of the finished product/s without stoppages at any point in time due to backflows, machine breakdowns, scrap, or other production delays”

Performance Metric (KPI) for Flow

Flow Time (days) = WIP ($)/Throughput ($/day) +

Therefore, a common sense strategy to eliminate waste, lower costs and increase order fulfillment on a daily basis should be to:

Reduce **average flow time per order**

Waste ↑ NVA Delays ↑ Flow Time

Types of Waste

- **Correction**
 - Repair or Rework

- **Waiting**
 - Any non-work time waiting for tools, supplies, parts, etc.

- **Motion**
 - Any wasted motion to pick up parts, stack parts, walking to get parts, etc.

- **Processing**
 - Doing more work than is necessary

- **Inventory**
 - Maintaining excess inventory of raw materials, parts in process, or finished goods.

- **Overproduction**
 - Producing more than is needed *before* it is needed

- **Conveyance**
 - Wasted effort to transport materials, parts, or finished goods into or out of storage, or between processes.
Example: Cost of Inventory

Say that the annual inventory costs of a company are $10,000,000. If we assume that work-in-process and raw materials make up 25% of this inventory, then the company has locked up $2,500,000 on its shopfloor. Next, if we assume that the inventory carrying cost is 10%, then the company is paying an additional $250,000 for warehouse space, security, electricity, etc. Hence, the penalty being paid by the company for not moving materials rapidly through its facility is $2,750,000!

1 Courtesy of E.J. Phillips (President, The Sims Consulting Group)
How The NVA Delays Increase Part Cost

Material is received in warehouse

Time to move to OP#1

Time in queue before OP#1

Setup time on OP#1

Processing time on OP#1

Wait at OP#1 to be moved to OP#2

Time to travel to OP#2

Future Worth ($) of all cash flows
Dominant Wastes that ↑ Flow Time

TOTAL TIME ON MACHINES
5%

TOTAL TIME IN MOVING AND WAITING
95%

TOTAL TIME IN THE FACILITY

IN CUT
30%

POSITIONING, GAGING, ETC.
70%
Relating Facility Layout & Flow Time

In a poorly-designed facility layout, the Average Travel Distance per Order ↑ therefore Transportation Waste ↑ therefore WIP Waste ↑ therefore Waiting Waste ↑ therefore Flow Time ↑, Throughput ↓ and Operating Cost ↑
“If successive processes are immediately adjacent, a single unit is moved at a time, as in an assembly line. If the next process is across the aisle, the handling lot size is a unit load. If the next process is across the plant, the handling lot size is, at least, an hour’s supply of product, because more frequent collection is impractical. If the next process is in another plant, the handling lot size is at least one day’s production ….. (since) the WIP between processes will be, at least, one half the handling lot size, (there are) potential orders-of-magnitude differences in WIP levels based on the layout”

Relating WIP & Moving Costs

When travel distance between two machines is large

Transfer Batch Quantity when travel distance between two machines is large

New WIP_{average} Level

Initial WIP_{average} Level

Transfer Batch Quantity when travel distance between two machines is reduced by a layout change
How to reduce the **Dominant** Wastes
Design For Flow (DFF)

Minimize Flows
- Eliminate operations
- Combine operations
- Minimize multiple flows

Maximize Directed Flow Paths
- Eliminate backtracking
- Eliminate crossflows and intersections among paths

Minimize Cost of Flows
- Eliminate handling
- Minimize handling costs
- Minimize queuing delays
- Minimize Pick-Up/Drop-Off delays
- Minimize in-process storage
- Minimize transport delays

Strategies to Minimize Flow

- Modify product designs to eliminate non-functional features
- Adopt new multi-function manufacturing technology to replace conventional machines
- Deliver materials to points of use which will minimize warehouse storage space
- Modularize the facility into flowlines, cells and focused factories
Strategies to Minimize Flow

- Process parts or subassemblies in parallel
- Combine several transfer batches into unit loads
- Select process plans with minimum number of operations
- Eliminate “outlier” routings by rationalization of the product mix
- Prevent proliferation of new routings - Use variant process planning to generate new routings
Types of Directed Flow Paths

Forward and in-sequence flows in one aisle are best.

Forward flows between parallel and adjacent lines of machines separated by a single aisle are okay.

Backtrack flows to an immediately previous machine are okay.

Cross flows across a single aisle are okay.

Cross flows across multiple aisles are NOT okay.
How to Maximize Directed Flow Paths

- Duplicate machines of the same type at multiple locations

- Use hybrid flowshop layouts

- Cascade flowlines in parallel
How to Maximize Directed Flow Paths

- Bend flowlines into U, W or S shapes

- Develop the layout based on the complete assembly operations process (flow) chart
How to Minimize Cost of Flows

• Design all material flow paths using \(\uparrow, \downarrow, \updownarrow, \downuparrow \) or \(\swarrow \) (linear) contours
• Design layouts to minimize travel distances for heavy/large unit loads
• Utilize relevant principles of material handling
 – Unit load
 – Utilization of cubic space
 – Standardization of equipment and methods
 – Mechanization of processes (if possible, automation of processes)
 – Flexibility of equipment and methods
 – Simplification of methods and equipment
 – Integration of material, people and information flows
 – Computerization of material, people and information flows
 – Utilize gravity to move materials
How to Minimize Cost of Flows

• Minimize all buffer/storage spaces at machines

• Balance consecutive operations - Use buffers (safety stock) strategically

• Maximize use of small transfer batches - Use “roving” forklifts to serve “zones” on the shopfloor on a First Come First Served (FCFS) basis

• Release materials in controlled quantities - Rely on kanbans (visual scheduling), production rate of bottleneck machines only, firm orders not production forecasts, etc.
Guidelines for Design For Flow

1. Optimum material flow
2. Continuous flow from receiving to shipping
3. Straight-line flow (as practicable)
4. Minimum flow between related activities
5. Proper consideration of process vs. product vs. group vs. alternative layouts
6. Minimum material handling distances between operations and activities
7. Heavy material to move least distance
8. Optimum flow of personnel –
 a. Number of persons
 b. Frequency of travel
 c. Space required
9. Minimum backtracking
10. Line production (as practicable)
11. Operations combined to eliminate or minimize handling between them
12. Minimum re-handling of materials
13. Processing combined with handling
14. Minimum of material in work area
15. Material delivered to point of use
16. Material disposed by one operator in convenient location for next operator to pick up
17. Minimum walking distances between operators
18. Compatible with building (present or proposed)
 a. Configuration (shape)
 b. Restrictions (strength, dimensions, column location and spacing, etc.)
19. Potential aisles
 a. Straight
 b. From receiving towards shipping
 c. Minimum number
 d. Optimum width
20. Related activities in proper proximity to each other

21. Provisions for expected
 a. In-process material storage
 b. Scrap storage and transport
22. Flexibility in regard to
 a. Increased or decreased production
 b. New products
 c. New processes
 d. Added departments
23. Amenable to expansion in pre-planned directions
24. Proper relationship to site
 a. Orientation
 b. Topography
 c. Expansion (plant, parking, auxiliary structures, etc.)
25. Receiving and shipping in proper relation to
 a. Internal flow
 b. External transportation facilities (existing and proposed)
26. Activities with specific location requirements situated in proper spots
 a. Production operations
 b. Production services
 c. Personnel services
 d. Administration services
27. Supervisory requirements given proper consideration
 a. Size of departments
 b. Shape
 c. Location
28. Production control goals easily attainable
29. Quality control goals easily attainable
30. Consideration given to multi-floor possibilities (existing and proposed)
31. No apparent violations of health or safety requirements

Strategies from DFMA Practices

• “Inside-Out”: In high mix environments, keep standard modules and components on the inside and “bolt on” the special features and options on the outside; *keep the product variation as far to the end of the line as possible*

• “Monument Avoidance”: Avoid component designs that require a new and unique process that has to serve multiple product lines

• “Batch Early”: If processes that necessitate batching (plating, painting, heat treat, ovens, drying/aging) are absolutely necessary, try to design products where these “batch” processes can be used as early as possible (Nothing is worse than requiring an oven/drying cycle in the middle of the Final Assembly Process)

• “Standardize Modules, not necessarily Products”: Offering a broad product mix is a competitive advantage, so reducing product SKU’s may not be a good idea. However, reducing module and component SKU’s should be a core strategy

— Courtesy of Ray Keefe, VP-Manufacturing, Emerson Electric Co.
Strategies from DFMA Practices

• “Don’t Hide Quality Risks”: Design the product so that the potential quality risks remain “hidden” during the sub-assembly and assembly process until they are visually checked ex. a design that needs to “trap” a ball and spring with a cover before the ball and spring are checked for accurate orientation is not good
• “Design for Poke-Yoke”: Not only avoid symmetry but design parts and assemblies with Poke-Yoke in mind
• “Challenge every tolerance”: Nothing is worse than holding tolerances that are not necessary - Tolerances should be analyzed and accepted based on conventional standards
• “Touch 100 times”: Think material handling and orientation while designing. If the product is heavy, are there quick and secure grab points? Can one orientation be used through all processes? Do we need to have special carriers? Remember, the product is designed ONCE, but each unit produced might be touched a 100 times!

— Courtesy of Ray Keefe, VP-Manufacturing, Emerson Electric Co.
Production Flow Analysis
What is Production Flow Analysis?

Production Flow Analysis (PFA) is a technique for machine grouping, part family formation, cell layout and overall factory layout that was developed by J. L. Burbidge. When used for factory design, PFA consists of four stages, each stage progressively achieving *Flow* in a smaller portion of the factory.
Stages in PFA Methodology

Factory Flow Analysis (FFA): Develops a unidirectional flow system joining the various departments in a factory; each department completes all the parts it makes.

Group Analysis (GA): Studies the flows in each of the shops identified by FFA; the operation sequences of parts are analyzed to design manufacturing cells.

Line Analysis (LA): Analyzes the flows corresponding to the operation frequencies and sequences of parts in each of the cells formed by GA; develops a cell configuration that ensures efficient transport inside the cell.

Tooling Analysis (TA): Studies the bottleneck machine in a cell in order to find “tooling families” of parts; families of parts are sequenced consecutively on the machine to minimize lost capacity due to setup changes.

Additional Stage

Shop Layout Analysis (SLA): Develops a shop layout that will minimize intercell flow delays when multiple interdependent cells share “monuments” and common expensive resources.
Factory Flow Analysis

MATERIAL

FINISHED PRODUCT

DEPARTMENTS
1 = BLANKS
2 = SHEET METAL WORK
3 = FORGE
4 = WELDING DEPT
5 = MACHINE SHOP
6 = ASSEMBLY
9 = OUTSIDE FIRMS

MATERIALS

FINISHED PRODUCT
Shop Flow Analysis

Before PFAST Analysis

After PFAST Analysis

Potential Cells in this Machine Shop

<table>
<thead>
<tr>
<th>COMPONENT – MACHINE CHART. INITIAL RECORD. Forge</th>
</tr>
</thead>
<tbody>
<tr>
<td>DM7 (3) X</td>
</tr>
<tr>
<td>DM (3) X</td>
</tr>
<tr>
<td>PG X</td>
</tr>
<tr>
<td>DXY (3) X</td>
</tr>
<tr>
<td>P&GR X</td>
</tr>
<tr>
<td>PGR X</td>
</tr>
<tr>
<td>P&G X</td>
</tr>
<tr>
<td>P&B X</td>
</tr>
<tr>
<td>PGB X</td>
</tr>
<tr>
<td>W&P X</td>
</tr>
<tr>
<td>WG3 X</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>COMPONENT – MACHINE CHART. AFTER FINDING FAMILIES AND GROUPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>DM7 (3) X</td>
</tr>
<tr>
<td>DM (3) X</td>
</tr>
<tr>
<td>PG X</td>
</tr>
<tr>
<td>DXY (3) X</td>
</tr>
<tr>
<td>P&GR X</td>
</tr>
<tr>
<td>PGR X</td>
</tr>
<tr>
<td>P&G X</td>
</tr>
<tr>
<td>P&B X</td>
</tr>
<tr>
<td>PGB X</td>
</tr>
<tr>
<td>W&P X</td>
</tr>
<tr>
<td>WG3 X</td>
</tr>
</tbody>
</table>

| FAMILY – 2 |
DM7 (3) X	X	X	X	X	X	X	X	X	X
DM (3) X	X	X	X	X	X	X	X	X	X
PG X	X	X	X	X	X	X	X	X	X
DXY (3) X	X	X	X	X	X	X	X	X	X
P&GR X	X	X	X	X	X				
PGR X	X	X	X	X	X				
P&G X	X	X	X	X	X				
P&B X	X	X	X	X	X				
PGB X	X	X	X	X	X				
W&P X	X	X	X	X	X				
WG3 X	X	X	X	X	X				

| FAMILY – 3 |
DM7 (3) X	X	X	X	X	X	X	X	X	X
DM (3) X	X	X	X	X	X	X	X	X	X
PG X	X	X	X	X	X	X	X	X	X
DXY (3) X	X	X	X	X	X	X	X	X	X
P&GR X	X	X	X	X	X				
PGR X	X	X	X	X	X				
P&G X	X	X	X	X	X				
P&B X	X	X	X	X	X				
PGB X	X	X	X	X	X				
W&P X	X	X	X	X	X				
WG3 X	X	X	X	X	X				

Component – Machine Chart. After finding families and groups...
Cell Flow Analysis
Tool Flow Analysis – Type I

<table>
<thead>
<tr>
<th>Turret Pos.</th>
<th>Tool Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Face and Rgt. Turn (use as stop)</td>
</tr>
<tr>
<td>2</td>
<td>Center</td>
</tr>
<tr>
<td>3</td>
<td>Drill</td>
</tr>
<tr>
<td>4</td>
<td>Boring</td>
</tr>
<tr>
<td>5</td>
<td>Finish Turn</td>
</tr>
<tr>
<td>6</td>
<td>Free</td>
</tr>
<tr>
<td>7</td>
<td>Free</td>
</tr>
<tr>
<td>8</td>
<td>Part Off</td>
</tr>
</tbody>
</table>

Notes – Additional tools should be placed in a free position where possible thus preserving the basic settings.
Tool Flow Analysis – Type II

<table>
<thead>
<tr>
<th>Digit 1</th>
<th>Digit 2</th>
<th>Digit 3</th>
<th>Digit 4</th>
<th>Digit 5</th>
<th>Digit 6</th>
<th>Digit 7</th>
<th>Digit 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method of holding</td>
<td>Dimension</td>
<td>Matching with</td>
<td>Material</td>
<td>Surface accuracy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Jaw chuck outer</td>
<td>Bore dia. (\phi)</td>
<td>Over all</td>
<td>(D_w)</td>
<td>L</td>
<td>Special attachments</td>
<td>Boring tool carrier</td>
<td>Quadruple single point tool holder</td>
</tr>
<tr>
<td>3 Jaw chuck inner</td>
<td>42 (\phi)</td>
<td>160</td>
<td>41……100</td>
<td>L/(D_w)<0.5</td>
<td>Axial copying</td>
<td>Boring, countersinking, reaming, tapping.</td>
<td>Uniform cutting, w/o accuracy.</td>
</tr>
<tr>
<td>4 Jaw chuck</td>
<td>60 (\phi)</td>
<td>250</td>
<td>101…200</td>
<td>L/(D_w) up to limit of chuck</td>
<td>Face copying</td>
<td>Only outer turning.</td>
<td>Uniform cut, or staggered cut, with accuracy, simple boring up to 48 (\phi).</td>
</tr>
<tr>
<td>Spring collet</td>
<td>80 (\phi)</td>
<td>315</td>
<td>301…400</td>
<td>Shafts<500</td>
<td>2 Axis copying</td>
<td>1 with 2</td>
<td>Outer shaping, chamfering, inserting with form tool, not copying.</td>
</tr>
<tr>
<td>Mandrel or arbor</td>
<td>80 (\phi)</td>
<td>400</td>
<td>401…500</td>
<td>Shafts 500…1000</td>
<td>Conical Surface tapering(\pm 12^\circ)</td>
<td>Shaping, etc. with form tool; with 3; not copying.</td>
<td>3 with 4</td>
</tr>
<tr>
<td>Jig or fixture</td>
<td>125 (\phi)</td>
<td>500</td>
<td>501…1000</td>
<td>Shafts 1m…2m</td>
<td>Steep cone</td>
<td>Inner shaping inserting chamfering; with 3; copying.</td>
<td>Shaping, inserting chamfering with form tool; copying.</td>
</tr>
<tr>
<td>Between centers</td>
<td>> 1000</td>
<td>Shafts 2m…5m</td>
<td>Short thread milling</td>
<td>Inner & outer at the same time</td>
<td>5 with 2 & 1 or 3</td>
<td>GG-bar</td>
<td>knurling, etc.</td>
</tr>
<tr>
<td>Chuck-center</td>
<td>Shafts >5m</td>
<td>Threading with lead screw</td>
<td></td>
<td></td>
<td>6 with back tool holder</td>
<td>ST-bar</td>
<td></td>
</tr>
<tr>
<td>Steadies</td>
<td></td>
<td>Thread with copying</td>
<td></td>
<td></td>
<td></td>
<td>NE-bar</td>
<td></td>
</tr>
<tr>
<td>Eccentric (face plate)</td>
<td></td>
<td>Unround copying</td>
<td></td>
<td></td>
<td>Automatic cycle with 4th & 5th digits</td>
<td>non-metal</td>
<td>9</td>
</tr>
</tbody>
</table>
Role of PFA in the Lean Enterprise

Enterprise

Factory

Factory

Factory

Factory

Factory

Supplier Networks

Factory/Site

Shop

Cell

Machine
Production Flow Analysis and Simplification Toolkit
Lean Advisory Tools using PFAST

- Waste Assessment in the Current State
- Value Network Mapping
- Evaluation of Current and Proposed Layouts
- Initial Menu of Lean Advisory Tools powered by PFAST
- Product Mix Segmentation
- Feasibility Analysis for Cellular Manufacturing
- Cell Layout
- Revision of Manufacturing Routings
- Product Mix Rationalization
- Design of Hybrid Cellular Layouts
Success Stories
Factory Flow Analysis

Before

<table>
<thead>
<tr>
<th>Metric</th>
<th>Before</th>
<th>After</th>
<th>% Reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead Time</td>
<td>7 weeks</td>
<td>3 1/2 weeks</td>
<td>50 %</td>
</tr>
<tr>
<td>Cycle Time</td>
<td>8 hours</td>
<td>6 hours</td>
<td>25 %</td>
</tr>
<tr>
<td>Part Travel (ft.)</td>
<td>2,450 ft</td>
<td>1,578 ft</td>
<td>36%</td>
</tr>
<tr>
<td>Walking (ft.)</td>
<td>3,150 ft</td>
<td>1,578 ft</td>
<td>50%</td>
</tr>
<tr>
<td>WIP</td>
<td>360 pcs.</td>
<td>200 pcs.</td>
<td>44%</td>
</tr>
</tbody>
</table>
Welding Cell

Co-located machines, equipment, tooling and processes to minimize part transportation and waiting

Emphasis placed on Flow

Eliminate wasteful steps that impede the speed at which the parts can flow through the assembly process

Create a visual workplace that is self-explaining, self-regulating and self-improving.

Waste Has No Place to Hide
Flexible Machining Cell
Pipe Fabrication Jobshop
Assembly of Industrial Scales
Acknowledgements

The PRO-FAST Program is enabled by the dedicated team of professionals representing the Defense Logistics Agency, Department of Defense and industry. These team mates are determined to ensure the Nation’s forging industry is positioned for the challenges of the 21st Century. Key team members include: R&D Enterprise Team (DLA J339), Logistics Research and Development Branch (DLA – DSCP), and the Forging Industry Association (FIA).
Acknowledgements

Project Champion: Craig Kaminski
Project Engineer: Haydn Garrett

Project Champion: John Wilbur
Project Engineers: Thomas Slauta

Project Champion: Joe Kracheck
Project Engineer: John Lucas

Project Champion: Andrew Ulven
Project Engineer: Jim Huiras

Project Champion: John Wilbur
Project Engineer: Jim Huiras

Project Champion: Dick Johnston
Project Engineer: Todd Sheppard

Project Champion: Thomas Stys
Project Engineer: Jorge Alvarez

Project Champion: Andrew Ulven
Project Engineer: Jim Huiras

Project Champion: Dick Johnston
Project Engineer: Todd Sheppard

PFAST Development Team
Dr. Rajiv Ramnath
Dr. Rajiv Shivpuri